Evaluating Algebraic Expressions

I. Substitute the given values for the variables in the expression
2. Evaluate the expression using the order of operations

- Parentheses/Brackets (inside to outside)
- Exponents
- Multiplication/Division (left to right)
- Addition/Subtraction (left to right)

$$
\begin{aligned}
& \text { ex: } 9 x^{2}-4(y+3 z) \\
& \text { for } x=-3, y=2, z=5
\end{aligned}
$$

$$
9(-3)^{2}-4(2+3 \cdot 5)
$$

$$
9(-3)^{2}-4(2+15)
$$

$$
9(-3)^{2}-4 \cdot 17
$$

$$
9 \cdot 9-4 \cdot 17
$$

$$
81-4 \cdot 17
$$

$$
81-68=13
$$

The Distributive Property

I. Multiply the number outside the parentheses by each term in the parentheses.
2. Keep the addition/subtraction sign between each term.
ex: $5(8 x-3)$
$5(8 x-3)$
$5(8 x)-5(3)$
$40 x-15$

Simplifying Algebraic Expressions

I. Clear any parentheses using the Distributive Property
2. Add or subtract like terms (use the sign in front of each term to determine whether to add or subtract)

$$
\text { ex: } 2(3 x-4)-12 x+9 i
$$

$$
2(3 x-4)-12 x+9!
$$

$$
6 x-8-12 x+9
$$

\square

Evaluate each expression for $a=9, b=-3, c=-2, d=7$. Show your work.

1. $a-c d$	2. $2 b^{3}+c^{2}$	3. $\frac{a+d-c}{b}$	4. $(a-b)^{2}+d(a+c)$
5. $4 c-(b-a)$	6. $\frac{a}{b}-5 a$	$7.2 b c+d(12-5)$	$8 . b+0.5[8-(2 c+a)]$

Simplify each expression using the Distributive Property.

$9.5(2 g-8)$	$10.7(y+3)$	$11 .-3(4 w-3)$	$12 .(6 r+3) 2$

Simplify each expression, showing all work.

$13.8(x+1)-12 x$	$14.6 w-7+12 w-3 z$	$15 \cdot 9 n-8+3(2 n-11)$	$16.3(7 x+4 y)-2(2 x+y)$
$17 .(15+8 d)(-5)-24 d+d$	$18.9(b-1)-c+3 b+c$	$19.20 f-4(5 f+4)+16$	$20.8(h-4)-h-(h+7)$

Solving One-Step Equations

I. Cancel out the number on the same side of the equal sign as the variable using inverse operations (addition/subtraction; multiplication/division)
2. Be sure to do the same thing to both sides of the equation!

$$
\begin{aligned}
\text { ex: } \begin{aligned}
-18 & =6 j \\
\frac{-18}{6} & =\frac{6 j}{6} \\
-3 & =j \longrightarrow j=-3
\end{aligned}
\end{aligned}
$$

Solving Two-Step Equations

1. Undo operations one at a time with inverse operations, using the order of operations in reverse (i.e. undo addition/subtraction before multiplication/division)

$$
\begin{aligned}
& \text { ex: } \begin{array}{l}
\frac{a}{7}-12=-9 \\
\\
\frac{a}{7}-12=-9 \\
+12+12
\end{array}
\end{aligned}
$$

2. Be sure to always do the same thing to both sides of the equation!
$7 \times \frac{a}{7}=3 \times 7$
$a=21$

Solving Multi-Step Equations

Solve each equation, showing all work.

$21 . f-64=-23$	22. $-7=2 d$	23. $\frac{b}{-12}=-6$	$13=m+21$

Scientific Notation

Standard Form to Scientific Notation: move the decimal after the first non-zero digit and eliminate any trailing zeros. Multiply by 10 to the power equal to the number of places you moved the decimal point. If the original number was greater than 1 , the exponent is positive. If the number was less than I, the exponent is negative.

Scientific Notation to Standard Form: move the decimal point the number of places indicated by the exponent. If the exponent is positive, move the decimal right. If negative, move left.
ex: 0.0000571
$0.00005,71$
Original number <1, so negative exponent
$=5.71 \times 10^{-5}$
ex: 3.5×10^{3}
Positive exponent, so move decimal right

$$
3,500=3,500
$$

Negative Exponents \& Simplifying Monomials

Zero Exponent: Any number raised to the zero ex: $y^{0}=1$ power equals I

Negative Exponent: Move the base to the opposite side of the fraction line and make the exponent positive

Monomial \times Monomial: Multiply the coefficients and add the exponents of like bases

Monomial : Monomial: Divide the coefficients and subtract the exponents of like bases

Power of a Monomial: Raise each base (including the coefficient) to that power. If a base already has an exponent, multiply the two exponents

Power of a Quotient: Raise each base (including the coefficient) to that power. If a base already has an exponent, multiply the two exponents
ex: $x^{-4}=\frac{1}{x^{4}}$
ex: $\left(4 x^{3}\right)\left(2 x^{5}\right)=8 x^{8}$
ex: $\frac{a}{a^{6}}=a^{-5}=\frac{1}{a^{5}}$
ex: $\left(-2 f g^{5}\right)^{3}=-8 f^{3} g^{15}$
$e x:\left(\frac{5 d^{3}}{c}\right)^{2}=\frac{25 d^{6}}{c^{2}}$

Convert each number to Scientific Notation.

$37.67,000,000,000$	38.0 .0009213	39.0 .00000000004	$40.3,201,000,000,000,000$

Convert each number to Standard Form.

$41.5 .92 \times 10^{-5}$	$42.1 .1 \times 10^{7}$	$43.6 .733 \times 10^{-8}$	$44.3 .27 \times 10^{2}$

Simplify each expression. Write your answers using only positive exponents.

45. w^{-9}	46. $\frac{m^{5}}{m^{2}}$	47. $f^{5} \cdot f^{3}$	48. $\left(\frac{h^{2}}{9}\right)^{3}$
49. $\left(a^{5}\right)^{2}$	$\text { 50. } \frac{1}{b^{-3}}$	51. z^{0}	$52.4 r^{6} \cdot 3 r \cdot 2 r^{2}$
53. $\frac{9 p^{-2}}{3 q^{-3}}$	$\text { 54. } \frac{8 d^{3}}{2 c d^{-2}}$	55. $\left(g^{4} h\right)^{2} \cdot\left(2 g^{3} h^{-1}\right)^{2}$	56. $(6 a)^{0}$
57. $\left(-3 n^{2} k^{4}\right)^{2}$	58. $\left(\frac{w^{5} x^{-2} y}{w^{2} x y^{4}}\right)^{3}$	59. $\frac{6 \cdot 10^{7}}{2 \cdot 10^{3}}$	60. $\left(1.5 \cdot 10^{-6}\right) \cdot\left(4 \cdot 10^{9}\right)$

Slope \& Rate of Change

Finding the Slope Given Two Points: Use the coordinates from the points in the slope formula:

$$
\text { Slope }(m)=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

ex: $\left.\underset{x_{1}}{(4,}-\underset{y_{1}}{2}\right),\left(\begin{array}{cc}-3, & 8) \\ x_{2} & y_{2}\end{array}\right.$

$$
m=\frac{8-(-2)}{-3-4}=\frac{10}{-7}=-\frac{10}{7}
$$

Finding the Rate of Change From a Table: Determine the amount the dependent variable (y) is changing and the amount the independent variable (x) is changing.

$$
\text { Rate of Change }=\frac{\text { change in } y}{\text { change in } x}
$$

Finding the Slope From a Graph: Choose 2 points on the graph. Find the vertical change (rise) and horizontal change (run) between the 2 points and write it as a fraction $\frac{\text { rise }}{\text { run. }}$. (Up is positive, down is negative, right is positive, and left is negative).

$$
m=\frac{50}{2}=25 \text { dollars } / \text { month }
$$

rise $=+1$
run $=-2$
run $=-2$
$m=\frac{1}{-2}=-\frac{1}{3}!$

Graphing Linear Equations

Slope-Intercept Form: $y=m x+b$
slope y-intercept

How To Graph:

I. Make a point on the y-axis at the y-intercept.
2. Use the slope to determine where to make the next point. The numerator tells you the rise (how far up/down) and the denominator tells you the run (how far right/left) to make the next point.
3. Repeat to make more points and then connect the points with a line.
$e x: y=2 x-4$
y-intercept: - 4
slope: $2=\frac{2}{1} \longleftarrow$ run

Find the slope of the line that passes through the points. Show your work.

$61 .(-5,3),(2,1)$	$62 .(8,4),(11,6)$	$63 .(9,3),(9,-1)$	$64 .(-4,-2),(-6,4)$

Find the rate of change. Show your work.

65.										
Number of Hours	3	6	9	12						
Distance (in miles)	135	270	405	540	\quad	Number of Weeks	1	3	5	7
:---:	:---:	:---:	:---:	:---:						
Pounds	173	169	165	161						

Find the slope of the line.

Graph the line.

70. $y=-x-3$	71. $y=\frac{1}{3} x+2$	72. $y=-3 x-1$
73.$y=-\frac{3}{2} x-2$	$\text { 74. } y=2 x+1$ A A 	75.$y=\frac{1}{4} x$

Solving Proportions

Similar Figures

The Pythagorean Theorem

*** The Pythagorean Theorem applies to right triangles only **
The sides next to the right angle ($a \& b$) are legs
The side across from the right angle (c) is the hypotenuse

Pythagorean Theorem: $a^{2}+b^{2}=c^{2}$

To find the hypotenuse: add the squares of the legs and then find the square root of the sum

To find a leg: subtract the square of the given leg from the square of the hypotenuse and then find the square root of the difference
ex:
12 cm

15 cm
x is the hypotenuse
$12^{2}+15^{2}=x^{2}$
$144+225=x^{2}$

$$
369=x^{2}
$$

$$
x=\sqrt{369} \approx 19.2 \mathrm{~cm}
$$

ex: $a=?, b=3, c=6$
a is a leg
$a^{2}+3^{2}=6^{2}$
$a^{2}+9=36$
$a^{2}=36-9=27$
$a=\sqrt{27} \approx 5.2$

Solve each proportion, showing all work.

76.	$\frac{6}{7}=\frac{4}{m}$	$77 \cdot \frac{12}{5}=\frac{k}{3}$	79. $\frac{h}{7}=\frac{2}{2}$	$\frac{9}{n}=\frac{4}{36}$

Assume each pair of figures is similar. Find the missing side length, showing all work.

Find the missing side length in each right triangle to the nearest tenth. Show your work!

87. $a=6, b=8, c=$?	88. $a=?, b=9 \mathrm{~cm}, c=13 \mathrm{~cm}$	89. $a=7, b=?, c=14$	90. $\mathrm{a}=14 \mathrm{in}, \mathrm{b}=14 \mathrm{in}, \mathrm{c}=$?
91.	92.	93.	94.
95.	96.	97.	98.

Determine whether or not you can form a right triangle from the given side lengths. Explain.

